
Mempuf Project – Tarek Idriss

Marcaus Cruz

July 2021

1 Types of PUFs

1.1 Mempuf

The Memory PUF (Mempuf for short) is the core PUF of this project as it aims
to use, to it’s advantage, a component of hardware that is present in virtually all
devices- memory. The architecture of the Mempuf is standard; having fields
like dimension (bit size of puf), data size (number of CRPs), challenge and
response arrays, a weights array for uniqueness, and a couple of added fields
in a phi array (for Machine Learning purposes) and a ’weight bits’ value (used
to control the range of weight values). One last field that makes this type of
PUF stand out from the others is the T array, which is used in this particular
evaluation process.

Enter Equation here

The Mempuf follows this equation for it’s evaluation which constantly uses
the XOR of previous challenge bits (T value) to sum up to an overall response
once it reaches n, the dimension of the PUF. This sum will ultimately result in
a positive or negative number which corresponds to a 1 or 0 as the response bit,
respectively.

1.2 Feed-Forward Mempuf

The Feed-Forward Mempuf (FF Mempuf) behaves very similarly to the Mempuf.
They have the same fields to them, but differ slightly during the evaluation
process.

Enter Equation here

As shown above in the above equation, this PUF adds one more XOR element
to the T value during evaluation at index i, which is the sign of the sum at index
i-1. This sign, either positive or negative, corresponds to XORing the T value
with a 1 or 0. This process is known as feeding forward the sign of the previous
sum to add an extra element of intricacy during evaluation.

1



1.3 XOR Mempuf

The XOR Mempuf adopts the same fields as the Mempuf as well as an array of
a specified number of Mempufs indicated by a –rows flag. Something to note is
that the challenges of these individual Mempufs are uniform. The evaluation of
the XOR Mempuf is a unique one as it first requires all of it’s internal Mempufs
to have CRPs generated before it can start it’s own evaluation. The Puf then
XORs the 0...nth bit of all responses from all individual Mempufs to generate
what we call an Overall Response. The XOR Mempuf’s ’responses’ array is then
set to the batch of overall responses calculated in the evaluation.

1.3.1 XOR Feed-Forward Mempuf

As it’s name suggests, this PUF is almost identical to the XOR Mempuf. Instead
of Mempufs as the internal PUFs, we use the previously mentioned FF Mempufs
for heightened complexity.

1.4 Control Feed-Forward Mempuf

The Control Feed-Forward Mempuf (Ctrl FF Mempuf) is a unification of the
Mempuf and the FF Mempuf. Per usual, the fields of this PUF remain the same
as a Mempuf except for the addition of a loop string, a loop start array, and a
loop end array. The loop is a string of paired numbers indicating the desired
bit in the challenge to be fed forward to the desired index during evaluation.

Here’s an example of a valid loop string:

”1 52 19 25 15 24 60 64 37 43”

As shown, the first of the paired indices must be less than it’s counterpart
because you cannot feed backwards during the evaluation. This string is telling
the Ctrl FF Mempuf that during evaluation it should feed the sign of the sum
at index 1 to XOR with the T value at index 52, the sign of the sum at index
19 to XOR with the T value at index 25, and so on and so forth. There’s a
check in the evaluation of a challenge that if the current index that we’re at in
the challenge is in the loop end array, we feed the corresponding saved value
forward. Otherwise, this PUF is evaluated as a normal Mempuf.

2 Special Flags Developed

2.1 –weight bits: int

Weights are what make these soft replicas of a PUF unique when evaluating
challenges. With a default value of 4 bits, the weights range from -8 to 7. To
add variability to weights to potentially increase complexity, thus security, we
added this flag which will increase or decrease the range depending on if you
set the weight bits greater than or less than 4, respectively.

2



2.2 –rows: int

This flag is only to be used when working with XOR Mempufs or XOR FF
Mempufs. It dictates the number of internal PUFs generated within the XOR
PUF. There is no default value for this flag, so it’s important to ensure the
usage of this flag when dealing with XOR PUFs, otherwise the PUF would act
as a normal Mempuf or FF Mempuf. For benchmarking, we used 3 rows and 5
rows.

2.3 –ctrl loop: string

The loop string is used only for the Ctrl FF Mempuf which indicates the indices
you want to feed from and to during evaluation. This flag was added to increase
intricacy of the Mempuf as ultimately succeeded. There is no default value for
this flag, so using this flag is necessary when handling the Ctrl FF Mempuf.

2.4 Flip bit flags

These flags are used when testing reliability through bit flipping. They’re func-
tion right now is to flip a single bit per run, but could be used to flip multiple
bits in different weights. Little additional code would be needed to do this.

2.4.1 –flip weight: int

Indicates which weight index to manipulate a bit of. The range is [0 ... dimen-
sion - 1].
Special flags needed to pair with:

• –flip bit

2.4.2 –flip bit: int

Specifies the bit index of the specified weight to flip. The range is [0 ... weight bits
- 1].
Special flags needed to pair with:

• –flip weight

2.4.3 –xor flip: int

Specifies the sub-PUF of any xor PUF to do bit manipulation on. The range is
[0 ... rows - 1].
Special flags needed to pair with:

• –flip bit

• –flip weight

• –rows

3



If you wanted to flip the first bit of the fifteenth weight in the third
sub-PUF: –flip weight 14 –flip bit 0 –xor flip 2

4


